欧美在线专区-欧美在线伊人-欧美在线一区二区三区欧美-欧美在线一区二区三区-pornodoxxx中国妞-pornodoldoo欧美另类

position>home>sport

代做CITS2002、C/C++語言程序代寫

代做代寫
CITS2002 - Second Project
A simple simulation of virtual memory
• This project is worth 10% of the marks in the unit.
• The project can be done in groups of two.
• The due date of the project is October 17, 11:59 pm.
• The project description is long, but the coding is simple. We will
discuss the project in the workshops on Fridays.
1 A simple simulation of virtual memory
The aim of this project is to simulate a simple virtual memory system using
an array as the RAM of a hypothetical machine. The project will also require
some C programming skills of using structures and pointers.
We have a computer whose RAM is an array of size 16. It is an array
of pointers. There are 8 page frames in the RAM, each consisting of two
contiguous locations in the array. Hence, the page size of this computer is 2.
The virtual memory of this computer is an array of pointers of size **
(We will pretend it is on disc, but actually it is an array in the RAM of
our computer). There are 4 processes in this computer, and each proces can
have 4 pages, and obviously all the pages of all the processes cannot be in
the main memory at the same time. Some pages will be in the main memory
and some pages will be in the virtual memory at any time. The processes are
numbered 0 . . . 3. Each process has a page table, which is an integer array,
entry of a process page table indicates whether the page is in RAM or in the
virtual memory (on disc), k if the page is in RAM (k is the frame number,
between 0 . . . 7), and 99 if the page is in disc (99 cannot be a frame number).
You have to define a structure that will consist of three fields, a process
id, a page number of the process, and the last time this page was accessed
if it is in the RAM. Time in the simulation is not real time, rather a time
step. Time increases in simulation steps, as explained below. The simulation
starts (at time 0) by initializing the virtual memory with all the 4 pages of
each process. You have to do the following steps before the simulation starts:
1• Define a structure whose pointer will be stored in each array location
of the RAM and the virtual memory. The structure may look like this:
struct {
int process_id;
int page_num;
int last_accessed;
} memory;
Initialise the process id and page num with the id of the process (a
number between 0 . . . 3) and a page number of that process (a number
between 0 . . . 3). Initialise all last access to 0.
• Create each page and store pointers in the array for the virtual memory.
 Note that the process id and page num of two consecutive array
locations will be the same since each page occupies two array locations.
The simulation starts by reading a file where there is a single line of
integers separated by blanks, for example:
0 2 1 3 3 2 2 0 2 1 0 2 3 0
Each integer indicates a process id. For example, the first number 0 indicates
 that the next page of process 0 has to be brought in from virtual
memory to the RAM. The process table of process 0 and the RAM have to
be updated accordingly. You can keep the content of the virtual memory
unchanged, as that is how virtual memory systems work. Our processes do
not do any computation, they just request the next page and later may write
a page back to virtual memory. You can assume for simplicity that all the
pages are always in the virtual memory and nothing needs to be written
back, as no page is updated by doing any computation. The last accessed
time of a page will be the time step when you brought the page to RAM.
For example, after reading this file, the first (or 0th page of process 0 will
be brought to RAM), the last accessed time of this page will be 0, as the
simulation starts now and time is 0. Time will increase by 1 for each entry
in the file.
The RAM may become full sometime, you have to use the local Least
Recently Used (LRU) algorithm for evicting a page and bringing a new page.
2local means you have to evict the least recently used page of the same
process for accommodating the new page. If there is no page of the process
whose page you want to bring in, use a global LRU policy, evict the page
that is least recently used among all pages in the RAM.
2 Submission
You have to write a C program in a single file called simulation.c, and
compiled as an executable called simulation. It will read two file names from
the command line, in.txt and out.txt. The first file is the one mentioned
above, for reading process ids. The second file is an output file where you
should print the following information at the end of the simulation. Your
submission will be executed as:
simulation in.txt out.txt
• The page tables of the four processes in separate lines. For example,
the page table for process 0 may look like this:
3, 2, 1, 99
This means there are three pages of process 0 in the RAM, pages 0, 1
and 2, in frames 3, 2 and 1, and page 3 is in the disc.
You have to also print the content of the RAM, each location separated
by a ’;’. For example, the RAM may look like this:
0,0,5; 0,0,5; 2,0,1; 2,0,1; etc. (16 entries)
Note that, the first two locations of the RAM stores page 0 of process
0, as each page occupies two array locations of the RAM. Also, this
page was brought to RAM at time step 5.
Amitava Datta
September 2024


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp








 

Popular articles

主站蜘蛛池模板: 精品一区二区三区在线视频| 我要看特级毛片| 色哟哟精品视频在线观看| 卡一卡二卡三精品| 美女被暴羞羞免费视频| 99热在线看| 91老湿机福利免费体验| 在线观看免费视频一区| 两性高清性色生活片性高清←片| 天天看天天射| 欧美色视频在线观看| 花季传媒下载免费安装app| 欧美yw193.c㎝在线观看| 一节毛片| 国产成人精品一区二三区| 精品无人区麻豆乱码1区2区| 三上悠亚电影在线观看| 欧美日韩国产一区二区三区欧| 多人乱p欧美在线观看| 成a人片亚洲日本久久| 欧美亚洲人成网站在线观看刚交 | 四虎永久在线精品免费影视| 欧美日韩免费在线视频| 午夜电影一区二区| 538免费视频| 国产一级毛片大陆| 动漫人物桶机动漫| 欧美成人怡红院在线观看| 蒂法3d同人全肉动漫在线播放| 第一次h圆房细致前戏| 毛片福利视频| 毛茸茸女人| 黑料不打烊tttzzz网址入口| 日鲁鲁| 99re热在线观看| 麻豆福利在线| 久久66热这里只会有精品| 无翼乌全彩之大雄医生| 免费观看四虎精品国产永久| 国产一级做a爰片久久毛片| 黄网站在线播放|